EEE5108/ETI5103 Digital Signal Processing.

Prof. Ciira Maina ciira.maina@dkut.ac.ke

17th July, 2025

Today's Lecture

1. z-Transform

z-Transform

Recall that for a discrete time sequence x[n], its Fourier transform $X(e^{j\omega})$ is given by

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (1)

► The z-transform is defined as

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$
 (2)

• When the Fourier transform exists, it is X(z) with $z = e^{j\omega}$

z-Transform

- ► z is a complex variable
- We can express z in polar form as $z = re^{j\omega}$
- When we evaluate the z-transform along the unit circle r=1, we get the Fourier tranform

Example

► Consider the sequence $x[n] = a^n u[n]$. Determine its z-transform

Solution

$$X(z) = \sum_{n=-\infty}^{\infty} a^n u[n] z^{-n}$$

$$= \sum_{n=0}^{\infty} a^n z^{-n}$$

$$= \sum_{n=0}^{\infty} (az^{-1})^n$$

$$= \frac{1}{1 - az^{-1}}$$

▶ This converges for $|az^{-1}| < 1$ or |z| > |a|

Region of Convergence

- ▶ X(z) converges when $|X(z)| < \infty$
- We have

$$|X(z)| = \left| \sum_{n=-\infty}^{\infty} x[n]z^{-n} \right|$$

$$\leq \sum_{n=-\infty}^{\infty} |x[n]| |(re^{j\omega})^{-n}|$$

$$\leq \sum_{n=-\infty}^{\infty} |x[n]r^{-n}| < \infty$$

