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Speech Recognition

I The goal is to convert the speech signal into text

I Applications include improved human-machine interaction



Speech Recognition

I The steps involved in building a speech recognition system
include

I Select a feature set
I Choose the recognition vocabulary, basic speech sounds
I Train the acoustic and language models
I Evaluate performance

See Figure 9.2 Rabiner and Schafer



Feature Extraction

See Figure 9.3 Rabiner and Schafer



Acoustic and Language Modelling

I Acoustic modelling requires accurately labelled sequences of
speech utterances

I The recordings are segmented according to the transcription

I Language modelling requires text strings reflecting the syntax
of the language



Performance Measures

I Accuracy

I Word error rate

I Sentence error rate



Mathematical Description of ASR

I Mathematically we have

Ŵ = arg max
W

PA(X |W )PL(W ) (1)

I X is a sequence of acoustic observations

X = {x1, . . . , xT} (2)

I W is a sequence of words

W = w1, . . . ,wM (3)



Acoustic Modelling

I The Gaussian distribution function for a 1D variable is given
by

p(x) =
1√

(2πσ2)
exp

{
− 1

2σ2
(x − µ)2

}
I The distribution is governed by two parameters

I The mean µ
I The variance σ2

I The mean determines where the distribution is centered and
the variance determines the spread of the distribution around
this mean.



Acoustic Modelling
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Acoustic Modelling - VAD Example
I Voice activity detection is a useful signal processing

application
I It involves deciding whether a speech segment is speech or

silence
I We divide the speech into short segments and compute the

logarithm of the energy of each segment.
I We see that the log energy shows distinct clusters.
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Acoustic Modelling - VAD Example

I A single Gaussian does not fit the data well
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Gaussian Mixture Models, Theory

I The Gaussian density can not be used to model data with
more than one distinct ‘clump’ like the log energy of the
speech frames.

I Linear combinations of more than one Gaussian can capture
this structure.

I These distributions are known as Gaussian Mixture Models
(GMMs) or Mixture of Gaussians



Gaussian Mixture Models, Theory

I The GMM density takes the form

p(x) =
K∑

k=1

πkN (x |µk , σk)

I πk is known as a mixing coefficient. We have

K∑
k=1

πk = 1

and 0 ≤ πk ≤ 1



Gaussian Mixture Models, Theory

I A GMM with three mixture components
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Gaussian Mixture Models, Theory

I The mixing coefficients can be viewed as the prior probability
of the components of the mixture

I We can then use the sum and product rules and write

p(x) =
K∑

k=1

p(k)p(x |k)

I Where
p(k) = πk

and
p(x |k) = N (x |µk , σk)



Gaussian Mixture Models, Theory

I Given an observation x , we will be interested to compute the
posterior probability of each component that is p(k |x)

I We use Bayes’ rule

p(k|x) =
p(x |k)p(k)

p(x)

=
p(x |k)p(k)∑
i p(x |i)p(i)

I We can use this posterior to build a classifier



Gaussian Mixture Models, Learning the model

I Given a set of observations X = {x1, x2, . . . , xN} where the
observations are assumed to be drawn independently from a
GMM, the log likelihood function is given by

`(θ;X) =
N∑

n=1

log
{ K∑

k=1

πkN (xi |µk , σk)
}

where θ = {π1, . . . , πK , µ1, . . . , µK , σ21, . . . , σ2K} are the
parameters of the GMM.

I To obtain a maximum likelihood estimate of the parameters,
we use the expectation maximization (EM) algorithm



Gaussian Mixture Models, Returning to the VAD Example

I In the VAD example we use the implementation of EM in
scikit-learn.

I We can then compute the posterior probability of all segments
belonging to the component with the highest mean.

I Segments where this probability is greater than a threshold
can be classified as speech.



Gaussian Mixture Models, Returning to the VAD Example
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Sequential Models

I Often the i.i.d assumption is poor

I In a speech signal, frames are not i.i.d

I One can predict current values based on past values

I In Markov models, future predictions are independent of all
except the most recent observations



First Order Markov Models

I In general

p(X ) = p(x1)
T∏
i=2

p(xi |xi−1, . . . , x1) (4)

I If we assume that

p(xi |xi−1, . . . , x1) = p(xi |xi−1) (5)

I We obtain the first order Markov chain

p(X ) = p(x1)
T∏
i=2

p(xi |xi−1) (6)



Hidden Markov Models

I To allow for richer structure, we introduce latent (hidden)
variables {zn}

I The model is now given by the joint distribution

p(x1, . . . , xT , z1, . . . , zT ) (7)

I The latent variables are assumed to form a first order Markov
chain and the joint distribution becomes

p(x1, . . . , xT , z1, . . . , zT ) = p(z1)
T∏
i=2

p(zi |zi−1)
T∏
i=1

p(xi |zi )

(8)

I When the latent variables are discrete, we obtain a hidden
Markov model



Hidden Markov Models

I At a single time slice, the model corresponds to a mixture
distribution with component distributions given by p(x|z)

I The latent variables zi are multinomial variables

I We adopt a 1-of-K encoding scheme

I The transition probabilities are represented in a transition
matrix A

I ajk = p(zik = 1|zi−1,j = 1) where 0 ≤ ajk ≤ 1 and
∑

k ajk = 1

I We have

p(z1, . . . , zT ) = p(z1)
T∏
i=2

p(zi |zi−1) (9)



Hidden Markov Models

I We have

p(zi |zi−1,A) =
K∏

k=1

K∏
j=1

a
zi−1,jzik
jk

I and

p(z1|π) =
K∏

k=1

πz1kk

I The distributions of the observed variables depend on
parameters φ. That is p(xi |zi , φ)



Hidden Markov Models

I The joint distribution of latent variables and observed
variables is given by

p(X,Z|θ) = p(z1|π)
( T∏

i=2

p(zi |zi−1,A)
) T∏

i=1

p(xi |zi , φ)

I Where θ = {π,A, φ}
I Give data, the parameters θ are estimated using maximum

likelihood



Readings

I HAH - Chapter 8

I RS - Chapter 9


